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Abstract

We propose a methodology for informative goodness of fit testing that combines the merits of both

hypothesis testing and nonparametric density estimation. In particular, we construct a data-driven

smooth test that selects the model using a weighted integrated squared error (WISE) loss function.

When the null hypothesis is rejected, we suggest plotting the estimate of the selected model. This

estimate is optimal in the sense that it minimises the WISE loss function. This procedure may be

particularly helpful when the components of the smooth test are not diagnostic for detecting moment

deviations. Although this approach relies mostly on existing theory of (generalised) smooth tests and

nonparametric density estimation, there are a few issues that need to be resolved so as to make the

procedure applicable to a large class of distributions. In particular, we will need an estimator of the

variance of the smooth test components that is consistent in a large class of distributions for which

the nuisance parameters are estimated by method of moments. This estimator may also be used to

construct diagnostic component tests.

The properties of the new variance estimator, the new diagnostic components and the proposed

informative testing procedure are evaluated in several simulation studies. We demonstrate the new

methods on testing for the logistic and extreme value distributions.
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1. Introduction

Smooth tests of goodness of fit have been proven very powerful for testing for a large col-

lection of distributions. See for example Rayner and Best (1989) or Rayner, Thas and Best

(2009b) for an overview. For many distributions the test statistic decomposes into squared

components which are related to deviations between the sample moments and the moments

of the hypothesised distribution. This allows an informative analysis in the sense that, at the

rejection of the null hypothesis, the components give an indication of what moments are not

in agreement with the hypothesised. Although this diagnostic property is supported by sim-

ulation studies for many common distributions (Rayner and Best, 1989; Rayner, Best and

Mathews, 1995), there is no theoretical ground for this. By properly rescaling the compo-

nents, however, it has been shown theoretically that the diagnostic property can be regained,

at least asymptotically, but large sample sizes are needed in practice (Henze and Klar, 1996;

Henze, 1997; Klar, 2000). Although the theory of Henze and Klar is fairly general, they

particularly focus on component tests for distributions for which the maximum likelihood

(MLE) and the method of moment estimators (MME) of the nuisance parameters are equal.

(However, see the companion paper of Rayner, Best and Thas, (2009a).)

In this paper we present two contributions. First, we explore the diagnostic component

tests for distributions for which MLE and the MME do not coincide. The core of the theory

consists of a variance estimator that is consistent in a wide class of distributions when the

nuisance parameters are estimated by means of MME. This particular variance estimator

has not been studied by Henze and Klar.

In the second part of the paper we exploit the relation between data-driven smooth tests

and nonparametric density estimation, resulting in a data-driven testing approach, that, at the

rejection of the null hypothesis, results in a nonparametric density estimate that may be used

to visually assess the sense in which the true distribution deviates from the hypothesised.

The latter procedure may be very helpful in settings where no diagnostic component tests

can be used.

This paper is organised as follows. In the next subsections of the introduction, more

details on generalised smooth tests, diagnostic components, data-driven tests and nonpara-

metric density estimation are provided. In Section 2 a variance estimator is introduced. The

new informative data-driven procedure is the topic of Section 3, and this is illustrated on an

example data set in Section 4. All simulation studies and examples involve testing for the

logistic or the extreme value distribution. More details on these distributions are given in

the Appendices A and B, respectively.

1.1. The full parametric null hypothesis

The one-sample goodness of fit problem is, perhaps, one of the oldest statistical problems.

It tests the null hypothesis that the observations come from a hypothesised distribution. Let

g and f denote the true and the hypothesised density functions, respectively. The latter is

often indexed by a p-dimensional parameter vector, which may be known or unknown to the

statistician. Usually the latter applies, and it thus has to be estimated from the data. The null
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hypothesis may then be expressed as

H0 : g(x) = f (x;βββ ) for all x ∈ R and some βββ ∈ B, (1.1)

where, without loss of generality, we have assumed that both density functions are defined

over the whole real line, and where B ⊆ R
p. At this time, we choose not to say anything

about the alternative hypothesis, but later, in Section 1.4, we give more details on this. We

will refer to the null hypothesis in (1.1) as the full parametric null hypothesis.

1.2. Generalised smooth tests

An order k smooth test may be constructed as explained in detail in Rayner and Best

(1989, Chapter 6). In particular, a smooth test is a score test for testing H0 : θ1 = . . . = θk = 0

against K : not H0 in a smooth order k alternative,

gk(x;θθθ ,βββ ) = C(θθθ ,βββ )exp

{

k

∑
j=1

θ jh j(x;βββ )

}

f (x;βββ ), (1.2)

where θθθ t = (θ1, . . . ,θk), C(θθθ ,βββ ) is a normalising constant, and {h j} is a set of orthonormal

polynomials on f , that is, they satisfy the equalities

∫ +∞

−∞
hi(x;βββ )h j(x;βββ ) f (x;βββ )dx = δi j,

i, j = 0,1,2, . . .. We always take h0(x;βββ ) = 1 for all x ∈ R, and h1(x) = (x− µ)/σ , where

µ and σ are the mean and the standard deviation of X under H0. See Rayner, Thas and

De Boeck (2008) for a convenient algorithm that generalises the Emerson (1968) recurrence

relations for discrete distributions.

Another, but less common construction of smooth goodness of fit tests, results from start-

ing from the order k smooth density given by

gk(x;θθθ ,βββ ) =

(

1+
k

∑
j=1

θ jh j(x;βββ )

)

f (x;βββ ). (1.3)

This model dates back to the Gram-Charlier series model; see, for example, Stuart and Ord

(1994, Section 6.17 and the following sections and the references therein). As it was also

considered by Barton (1953) it is sometimes referred to as the Barton model. It also occurs

often in the literature on nonparametric density estimation where it is generally known as

the orthonormal series density estimator (see e.g. Anderson and De Figueiredo (1980);

Buckland (1992); Cencov (1962); Clutton-Brock (1990); Diggle and Hall (1986)). In non-

parametric density estimation, usually f is the uniform density over [0,1], and in the few

occasions where f is not restricted to the uniform density, f is referred to as a ‘parametric

start’ (Hjort and Glad, 1995), or a ‘parametric key’ (Buckland, 1992). In most of these ref-

erences the density f is not parameterised by a nuisance parameter. An important advantage

of density (1.3) is that no normalisation constant is needed, and it is an integratable function

for bounded θ j’s. On the other hand, when k finite, it is not guaranteed to be a positive

function. In Section 3.4 we will give more details on how this problem can be solved.
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Baringhaus and Henze (1992), Kallenberg, Ledwina and Rafajlowicz (1997), and Mardia

and Kent (1991) remarked that the density in (1.2) is not always well defined, because it is

not guaranteed to be integrable, in which case the normalising constant is not well defined.

Despite this theoretical problem, the score statistics that we will derive behave properly

under the usual mild conditions.

The exact form of the order k smooth test statistic depends on how the nuisance parameter

βββ is estimated. When MLE is used, Rayner and Best (1989, chapter 6) give details on how

the test statistic is obtained. In the accompanying paper (Rayner, Best and Thas, 2009a)

generalised smooth tests are discussed. Generalised smooth tests are basically generalised

score tests (Boos, 1992; Hall and Mathiason, 1990), which are valid for the large class of

asymptotically linear estimators, to which, among others, the MLE and the M-estimators,

and thus also the MME belong. In this paper we will only use MME; the reason will become

clear shortly. In the next paragraph we briefly discuss the construction of the generalised

smooth test, as well as the estimation of βββ by means of the method of moments.

Suppose βββ is known, and let X1, . . . ,Xn denote a random sample of i.i.d. observations.

The score statistic related to θ j in (1.2) and (1.3) is given by

Vj(βββ ) =
1√
n

n

∑
i=1

h j(Xi;βββ ).

Let β̃ββ denote an asymptotically linear estimator, and VVV t(βββ ) = (V1(βββ ), . . . ,Vk(βββ )). The order

k generalised smooth test statistic is then given by

S̃k = VVV t(β̃ββ )Σ̃ΣΣ
−1

0 VVV (β̃ββ ),

in which Σ̃ΣΣ0 is a consistent estimator of ΣΣΣ0, the asymptotic covariance matrix of ṼVV = VVV (β̃ββ )
under the null hypothesis (1.1). Under this null hypothesis S̃k asymptotically has a χ2

k−p

null distribution. For more details we refer to Rayner, Best and Thas (2009a). In the present

paper is it particularly important to realise that ΣΣΣ0 is defined under the full parametric null

hypothesis. In the next subsection we give more details on the nuisance parameter estimation

by means of the method of moments.

1.3. Method of moment estimators

If a density function f (.;βββ ) is indexed by a p dimensional nuisance parameter βββ , then

its MME is defined as the βββ = β̃ββ that makes f (.;βββ ) agree with the sample data in its first

p moments. Since generalised smooth tests are generalised score tests, all nuisance pa-

rameters must be estimated under the null hypothesis. Suppose the central moments of the

hypothesised distribution f are denoted by µ0 j, for j > 1, and the mean is denoted by µ01.

Here we write µ0 j(βββ ) to stress that these moments depend on the nuisance parameter. The

MME of βββ is then the solution to the estimation equations

n

∑
i=1

(Xi −µ01(βββ )) = 0
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and

n

∑
i=1

{

µ0 j(βββ )− (Xi −µ01(βββ )) j
}

= 0 for j = 2, . . . , p. (1.4)

The construction of the orthonormal polynomials implies that the estimation equations

(1.4) can be replaced with the equations ( j = 1, . . . , p)

n

∑
i=1

h j(Xi;βββ ) = 0.

It now follows that the estimation equations are equivalent to V1(β̃ββ ) = . . . = Vp(β̃ββ ) = 0, that

is, the first p components are exactly zero. Another consequence is that the k×k covariance

matrix ΣΣΣ0 is not well defined. We therefore agree to remove the first p terms from (1.2)

and (1.3).

1.4. The diagnostic property

In some cases the matrix Σ̃ΣΣ0 is a diagonal matrix, say diag(σ̃2
p+1, . . . , σ̃

2
k ), so that a de-

composition of S̃k follows, i.e.

S̃k = ṼVV
t
Σ̃ΣΣ
−1

0 ṼVV =
k

∑
j=p+1

Ṽ 2
j

σ̃2
j

.

Moreover, under the full parametric null hypothesis, the standardised components, Ṽj/σ̃ j, all

have an asymptotic standard normal distribution, and they are asymptotically independent.

Klar (2000) showed that this decomposition always arises for distributions in which MLE

and MME coincide.

The jth component, which is constructed from a polynomial of degree j, is a linear com-

bination of contrasts between sample moments and the corresponding moments of the hy-

pothesised distribution f up to the jth order. The latter moments depend on the nuisance

parameter β , and when MME is used the first p contrasts in Ṽj are exactly zero. When

focussing on the first non-zero component, Ṽp+1, it would be tempting to conclude that

when the null hypothesis is rejected due to a large Ṽp+1/σ̃p+1, the true and the hypothesised

distributions do not agree in the (p+1)th moment. Similar reasoning applies to higher order

components, except that no more than one moment may be involved. However, as Henze

and Klar (Henze and Klar, 1996; Henze, 1997; Klar, 2000) showed, the arguments just given

are not correct. Since we will very often refer to their results, we use the abbreviation HK

to refer to them and their papers just cited. Before we summarise their arguments, we first

properly define a diagnostic component test.

A size α test based on the jth order component is said to be (asymptotically) diagnostic

for the jth order moment when (1) it has (asymptotically) size α if and only if the true and

the hypothesised distributions agree in the jth moment; and (2) it is consistent under the

alternative that the true and the hypothesised distributions disagree in the jth moment.

The core of the argument of HK is based on the variance of Ṽj which plays an important

role as the hypothesis test is based on Ṽj/σ̃ j and the standard normal distribution. Since
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Ṽj contains sample observations raised to the power j, its variance depends on moments of

X up the order 2 j. Under the full parametric null hypothesis all moments are completely

determined by the hypothesised distribution, and σ̃2
j is a consistent estimator of Var

[

Ṽj

]

.

However, when the null hypothesis does not hold, deviations in moments up to the order 2 j

may influence the variance of Ṽj, and thus also the asymptotic distribution of Ṽj/σ̃ j. Even

when the true and the hypothesised moments agree, a deviation in any of the other moments

up to order 2 j may alter the asymptotic distribution of Ṽj/σ̃ j, so that a test based on this

component, using the standard normal distribution as a reference distribution, may have a

power far greater than the expected nominal significance level α . The same argument may

make the variance of Ṽj so small that the component test using the standard normal as a null

distribution has virtually no power at all.

For a large class of distributions HK solved the problem by rescaling the components.

In particular, they suggest basing the hypothesis test on Ṽj/σ̃E j, where σ̃2
E j is an estimator

of the asymptotic variance of Ṽj which is consistent under the partial semiparametric null

hypothesis that g and f have equal jth moments. For the class of densities for which MLE

and MME coincide, they propose the estimator

σ̃2
E j =

1

n

n

∑
i=1

h2
j(Xi; β̃ββ ), (1.5)

which is basically the empirical variance estimator of Ṽj. In Section 2 we give more theo-

retical details.

1.5. Data-driven smooth tests

A common criticism to smooth tests is that the order k has be be chosen a priori by the

statistician. For a fixed order k, and using the terminology introduced in the previous section,

we may say that an order k smooth test is only consistent for testing the semiparametric null

hypothesis that f and g agree in their first k moments. In this sense the order k smooth test

is not omnibus consistent.

In a series of papers, Ledwina and Kallenberg (Ledwina, 1994; Kallenberg and Ledwina,

1995, 1997) introduced data-driven smooth tests for which the order k is selected from

the data by optimising the BIC model selection criterion. Their theory shows that these

data-driven tests regain the omnibus consistency property. Many simulation studies have

indicated that data-driven smooth tests have better overall power properties than fixed order

k smooth tests. Their data-driven techniques, however, build upon the Neyman smooth

test for uniformity; that is they work with the probability integral transformed observations

so that they always use Legendre polynomials and they loose the interpretability of the

components. More recently, Claeskens and Hjort (2004) suggested data-driven versions of

the type of smooth tests discussed in Section 1.2. Starting from the order k smooth density

of (1.2), they constructed both the likelihood ratio and the score tests. Most of the solutions

they proposed are restricted to the case where the nuisance parameter βββ is assumed known.

Some details on the unknown βββ case are presented in their section 6, but since they only

considered MLE and they did not aim at producing interpretable components, we do not

follow their theory exactly. They considered model selection based on the AIC, BIC and the

BIG criteria.
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1.6. Informative generalised smooth tests

The idea that we pursue here can be summarised as follows. Since the generalised smooth

test statistics do not generally decompose into asymptotically independent components, and

since the individual components are not necessarily diagnostic, we suggest using a fitted

improved density estimate to see how the true density function might deviate from the hy-

pothesised. A fitted improved density is simply a density of the form (1.2) or (1.3) with

the unknown parameters replaced by estimates. We suggest only looking at the improved

density estimate if the data-driven test results in the rejection of the null hypothesis. The

relation between data-driven smooth tests and model selection now becomes very relevant.

If some model selection rule gives that only a subset of the k θ parameters must be included,

then it is sufficient to estimate these selected parameters and plot the corresponding fitted

density. Thus AIC and BIC are very natural choices. However, these model selection cri-

teria do not necessarily give good density estimates from an estimation point of view. In

the literature about nonparametric density estimation, density estimates based on (1.3) are

known as orthonormal series expansion. In this paper we propose a data-driven smooth

test based on a criterion typically used for the selection of estimators: a weighted mean

integrated squared error criterion (WISE). Our method has good properties and it gives no

computational problems.

Since the WISE criterion requires a consistent estimator of the variance of Ṽj, we first

propose an estimator different from those discussed by HK. Although this new variance es-

timator may also be used to construct asymptotically diagnostic component tests, we do not

pursue this approach; simulation studies (not shown) have indicated that the convergence is

so extremely slow that we could not recommend these rescaled component tests in practice.

2. A Consistent Variance Estimator

In this section we propose a consistent variance estimator for a class of distributions for

which MLE and MME do not coincide. First, in Section 2.1, we give a formal construction

of the semiparametric framework. The variance estimator is the topic of Section 2.2. Its

performance is empirically investigated in Section 2.3.

2.1. The semiparametric framework

We first introduce a set P of proper densities, defined as (m ≥ 1)

Pm =

{

g ∈ D :

∫ +∞

−∞
x jg(x)dx < ∞, j = 1, . . . ,m

}

,

where D is the set of all continuous density functions defined over (−∞,+∞). The order k

semiparametric null hypothesis can now be formulated as

HSP
0 : g ∈ F0 =

{

g ∈ P2k : Eg [h1(X ;βββ )] = . . . = Eg [hk(X ;βββ )] = 0,βββ ∈ B
}

.
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Obviously f ∈ F0, but the set F0 also contains densities not consistent with f . Thus if βββ
has to be estimated under the semiparametric null hypothesis, it is too restrictive to use f .

Moreover, in the current semiparametric setting the function f is only used to generate the

first k hypothesised moments. Therefore, we refer to f as the moment generating density

function. A consequence of this discussion is that the MLE of βββ is meaningless in this

setting. Since the semiparametric null hypothesis is about moments, HK argue that the

method of moments estimator is the only sensible solution. Under the semiparametric null

hypothesis, βββ is defined as the solution of

Eg [h j(X ;βββ )] = 0 ( j = 1, . . . , p;g ∈ HSP
0 ). (2.1)

This equation basically says that every p-dimensional vector βββ fixes the first p moments of

f to those of g. By inverting this relation, we could say that every set of p moments of f ,

say µ1, . . . ,µp, determines βββ uniquely for a given g ∈ HSP
0 . Let βββ (g) denote the parameter

βββ that satisfies (2.1). The semiparametric null hypothesis can be restated as

HSP
0 : g ∈ F0 =

{

g ∈ P2k : Eg [hp+1(X ;βββ (g))] = . . . = Eg [hk(X ;βββ (g))] = 0
}

.

We also introduce the r-th partial semiparametric null hypothesis,

HPSP
0;r : g ∈ F0;r =

{

g ∈ P2r : Eg

[

{X −µ1(βββ (g))}r] = 0
}

.

2.2. The variance estimator

The method of moments estimator β̃ββ belongs, under suitable regularity conditions, to the

class of local asymptotical linear estimators. We refer, for example, to van der Vaart (1998)

for more technical details on locally asymptotically linear estimators.

The next theorem gives a consistent estimator of the variance of ṼVV r. Although HK did

not use this estimator in their examples, the estimator can also be derived from the proof of

theorem 2.1 in Klar (2000).

Theorem 2.1. Assume β̃ββ is a locally asymptotically linear estimator with representation

√
n
(

β̃ββ −βββ
)

=
1√
n

n

∑
i=1

bbb(Xi;βββ )+oP(1), (2.2)

where

bbb(x;βββ ) =

{

Eg

[

−
∂hhhβ

∂βββ
(X)

]}−1

hhhβ (x;βββ ).

Let

wr(x;βββ ) = hr(x;βββ )+bbbt(x;βββ )Eg

[

∂hr

∂βββ
(X ;βββ )

]

, (2.3)

and w̄r(βββ ) = 1
n ∑n

i=1 wr(Xi;βββ ). For all r ∈ {p+1, . . . ,k}, under the order k semiparametric

null hypothesis, i.e. g ∈ F0, a consistent estimator of the asymptotic variance of Ṽr is given
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by

σ̃2
r (β̃ββ ) =

1

n

n

∑
i=1

(

wr(Xi; β̃ββ )− w̄r(β̃ββ )
)2

. (2.4)

Proof. First note that a Taylor series expansion of Ṽr = 1√
n ∑n

i=1 hr(Xi; β̃ββ ) and the substitu-

tion of β̃ββ with its representation (2.2) gives

Ṽr =
1√
n

n

∑
i=1

(

hr(Xi;βββ )+bbbt(Xi;βββ )Eg

[

∂hr(Y ;βββ )

∂βββ

]

+oP(n−1/2)

)

. (2.5)

Further note that

Ṽr =
1√
n

n

∑
i=1

wr(Xi; β̃ββ ).

We first consider βββ known.

Write

σ̃2
r (βββ ) =

1

n

n

∑
i=1

w2
r (Xi;βββ )− w̄2

r (βββ ).

Then

Eg

[

σ̃2
r (βββ )

]

= Eg

[

w2
r (X ;βββ )

]

−Eg

[

w̄2
r (βββ )

]

= Eg

[

w2
r (X ;βββ )

]

−
(

Varg [w̄r(βββ )]+Eg [w̄r(X ;βββ )]2
)

= Eg

[

w2
r (X ;βββ )

]

−
(

1

n
Varg [wr(X ;βββ )]+Eg [wr(X ;βββ )]2

)

=
(

Eg

[

w2
r (X ;βββ )

]

−Eg [wr(X ;βββ )]2
)

− 1

n
Varg [wr(X ;βββ )]

=
n−1

n
Varg [wr(X ;βββ )] .

Since, by (2.5), Ṽr = 1√
n ∑n

i=1(wr(Xi;βββ ) + oP(n−1/2)), we have, as n → ∞, Eg

[

σ̃ 2
r (βββ )

]

−
Varg

[

Ṽr

]

→ 0. Moreover, since β̃ββ is a
√

n consistent estimator, as n → ∞,

Eg

[

σ̃2
r (β̃ββ )

]

→ Varg

[

Ṽr

]

. ¤

From this proof it can be seen that it is particularly the ∂hr

∂βββ
(x;βββ ) term in the wr function

(2.3) that makes the new variance estimator different from σ̃2
Er in (1.5). The expectation

of this term appears in the expansion (2.5) of Ṽr, and therefore also in the variance. It is

exactly the expectation of this term that is assumed to be zero in (1.5). This happens for

all distributions in the exponential family for which MLE and MME coincide, for example

the normal, Poisson, exponential and the binomial distributions. Distributions for which

the correction terms are necessary include the logistic, extreme value, Laplace, negative-

binomial, beta-binomial and the generalised Pareto distributions.
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The correction term makes the new variance estimator (2.4) slightly more complicated,

particularly because this correction terms depends on the distributions and on the estimation

function of the nuisance parameter. In Appendices A and B the partial derivatives ∂hr

∂βββ
(x;βββ )

are listed for the logistic and the extreme value distributions. HK suggested another solution:

(1) compute Var
[

Ṽr

]

and express it in terms of moments up to the order 2r; (2) replace these

moments by their empirical moment estimators.

2.3. Simulation study

In this section we empirically assess the validity of the new variance estimator in simula-

tion studies. In the first series of simulations the asymptotic unbiasedness of the estimator is

assessed, while in the second we investigate the diagnostic property of rescaled component

tests, using the new variance estimator. Both the logistic and the extreme value distributions

are considered.

2.3.1. The bias

Since the variance of the components should be estimated consistently under the semi-

parametric null hypothesis, which may, for example, only specify one particular moment,

we have considered several distibutions in this simulation study.

• For the components of the generalised smooth test for the logistic distribution we have

simulated from a logistic distribution; all moments are thus consistent with the semipara-

metric null hypothesis.

• For the components of the generalised smooth test for the extreme value distribution we

have simulated from an extreme value distribution; all moments are thus consistent with

the semiparametric null hypothesis.

• For both testing for the logistic and the extreme value distributions, we have further in-

cluded:

◦ the normal distribution: it has the same skewness (symmetric) as the logistic distribu-

tion;

◦ the uniform distribution over [0,1] has the same skewness (symmetric) as the logistic

distribution;

◦ the exponential distribution: neither the third or the fourth moment agree with the

logistic or the extreme value distribution;

◦ the gamma distribution with shape paramter γ: with increasing γ the gamma distribu-

tion becomes more symmetric, and with γ = 5 it has the same kurtosis as the logistic

distribution, and with γ = 3.08 it has the same skewness as the extreme value distribu-

tion.

For samples sizes n = 100, n = 500 and n = 1000, 10,000 Monte-Carlo simulation runs are

performed. In each simulation run, the new and the simple empirical variance estimators

for Ṽ3 and Ṽ4 are computed. Although σ̃2
E is not an appropriate estimator in the current

setting, we only include it here to demonstrate the beneficial effect of the correction term in
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(2.4). The averages of these estimates approximate the expected values of the estimators.

Based on the 10,000 simulation runs the true variances of Ṽ3 and Ṽ4 are approximated as the

variance of the 10,000 simulated components. These serve as the benchmark with which

the approximated means of the variance estimators have to be compared so as to assess the

bias.

The results for the logistic and the extreme value distributions are presented in Tables 2.1

and 2.2. We first discuss the results for the largest sample size considered, i.e. n = 1000.

The expected values of the new variance estimator seem almost always to be very close

to the true variance, for both the logistic and the extreme value distribution. The simpler

estimator σ̃2
E performed clearly worse. However, for the fourth order component under the

exponential distribution this estimator outperformed the new one, both for the logistic and

the extreme value components. The variance of the fourth order logistic component was also

better estimated by σ̃ 2
E under the very skewed gamma distributions with small γ parameter.

From comparing the results for the smaller sample sizes (n = 100 and n = 500), we conclude

that the convergence is very slow, and we conclude thus that a substantial bias persists unless

the sample size is sufficiently large.

2.3.2. The diagnostic property

In this section we present the results of a limited simulation study in which the powers

of the component tests are estimated under various alternatives so as to assess the diag-

nostic property of the rescaled components. As argued in Section 1.4, when ensuring that

a component test is diagnostic the component should be properly rescaled before using it

as a test statistic. We have set up a simulation study using the same alternatives as in the

bias simulation study, but we will not present all results here. Since the convergences of

the variance estimators are very slow, large sample sizes are needed before the (asymptotic)

diagnostic property is true. This was also concluded by HK from their simulation studies.

These large sample sizes, however, result in powers of approximately 100% under many

interesting alternatives, so that a comparison becomes uninformative. Therefore, we present

here only the results under alternatives that have at least one moment in agreement with one

of the partial semiparametric null hypotheses. For these alternatives we expect the rescaled

component tests to have size close to the nominal significance level.

Again all results are based on 10,000 Monte Carlo simulation runs, but only sample size

n = 1000 is considered. In each simulation run rescaled component tests based on both σ̃ 2
E

and σ̃2, and the unscaled component tests are all performed at the 5% level of significance.

The latter is the MME based generalised smooth test, using the asymptotic variance under

the full parameteric null hypothesis (see Appendices A and B for these variances). Since

all tests are supposed to test a semiparametric null hypothesis, their null distributions must

be computed under these semiparametric nulls. The theory presented in HK shows that

the rescaled components, using any
√

n consistent variance estimator, are asymptotically

standard normally distributed under the appropriate (partial) semiparametric null hypothesis.

Since we expect that the convergence to this limitting distribution is slow, we have tried

some alternative methods, but none gave satisfactory results. For example, the bootstrap

method proposed by Bickel, Ritov and Stoker (2006) gave worse results than the asymptotic

standard normal quantiles. We therefore used the latter in our simulations.
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Table 2.1. Averages of the variance estimates σ̃2
j and σ̃2

E j of the components ( j =

3,4) for the logistic distribution (from 10,000 simulations). As a benchmark the
approximate true variance of the components is also presented (Var

[

Ṽ j

]

).

σ̃2
j σ̃2

E j Var
[

Ṽ j

]

j = 3 j = 4 j = 3 j = 4 j = 3 j = 4

n = 1000

logistic

σ = 1 0.97 0.86 0.96 0.88 1.03 0.98

σ = 2 0.97 0.83 0.95 0.85 1.03 0.92

normal

σ = 1 0.26 0.09 0.33 0.28 0.27 0.09

σ = 2 0.26 0.08 0.33 0.28 0.27 0.09

uniform [0,1]

0.09 0.01 0.29 0.22 0.09 0.00

exponential

γ = 2 2.40 16.63 8.27 30.47 2.94 25.01

gamma

γ = 3 0.84 2.53 1.95 2.83 0.92 3.03

γ = 5 0.59 1.25 1.18 1.25 0.62 1.40

γ = 7.5 0.48 0.74 0.86 0.73 0.50 0.81

n = 500

logistic

σ = 1 0.90 0.70 0.93 0.80 1.03 0.90

σ = 2 0.90 0.73 0.93 0.83 1.00 0.92

normal

σ = 1 0.26 0.08 0.33 0.28 0.27 0.09

gamma

γ = 5 0.54 0.99 1.13 1.09 0.61 1.26

n = 100

logistic

σ = 1 0.53 0.23 0.72 0.49 0.81 0.53

σ = 2 0.52 0.23 0.71 0.50 0.80 0.53

normal

σ = 1 0.22 0.06 0.32 0.28 0.25 0.08

gamma

γ = 5 0.31 0.30 0.85 0.58 0.47 0.72
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Table 2.2. Averages of the variance estimates σ̃2
j and σ̃2

E j of the components ( j = 3,4)

for the extreme value distribution (from 10,000 simulations). As a benchmark the
approximate true variance of the components is also presented (Var

[

Ṽ j

]

).

σ̃2
j σ̃2

E j Var
[

Ṽ j

]

j = 3 j = 4 j = 3 j = 4 j = 3 j = 4

n = 1000

extreme value

b = 1 1.30 1.02 0.91 0.76 1.43 1.09

b = 2 1.33 1.05 0.93 0.86 1.46 1.16

normal

σ = 1 0.29 1.63 1.77 3.35 0.30 1.67

σ = 2 0.29 1.63 1.77 3.37 0.29 1.61

uniform [0,b]

b = 1 0.10 0.54 0.58 0.48 0.11 0.55

b = 2 0.10 0.54 0.58 0.48 0.10 0.53

exponential

γ = 1 2.61 2.18 2.42 3.84 3.17 3.78

γ = 2 2.59 2.07 2.39 3.42 3.17 3.38

gamma

γ = 1 2.55 2.10 2.35 3.76 3.08 3.75

γ = 2 1.29 0.79 0.86 0.68 1.44 0.89

γ = 3.08 0.91 0.75 0.63 0.47 0.99 0.77

γ = 4 0.74 0.78 0.60 0.47 0.77 0.77

n = 500

extreme value

b = 1 1.11 0.97 0.85 0.70 1.33 1.01

b = 2 1.09 0.96 0.84 0.69 1.33 1.04

gamma

γ = 3.08 0.79 0.74 0.60 0.45 0.94 0.76

n = 100

extreme value

b = 1 0.46 0.94 0.64 0.56 0.92 0.96

b = 2 0.45 0.91 0.62 0.55 0.87 0.95

gamma

γ = 3.08 0.39 0.73 0.50 0.42 0.69 0.74
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Table 2.3. Powers of the component tests (α = 5%) for the logistic distribution
(number of rejections out of 10,000 simulations).

Ṽ j/σ̃ j Ṽ j/σ̃E j Ṽ j

n = 1000 j = 3 j = 4 j = 3 j = 4 j = 3 j = 4

logistic

σ = 1 607 1743 528 1111 474 346

σ = 2 585 1665 522 1040 509 335

normal

σ = 1 538 9975 271 9974 2 8283

σ = 2 572 9982 270 9981 1 8276

uniform [0,b]

b = 1 455 10000 4 10000 0 10000

b = 2 511 10000 5 10000 0 10000

gamma

γ = 5 10000 1744 9998 1606 10000 558

Table 2.4. Powers of the component tests (α = 5%) for the extreme value distribution
(number of rejections out of 10,000 simulations).

Ṽ j/σ̃ j Ṽ j/σ̃E j Ṽ j

n = 1000 j = 3 j = 4 j = 3 j = 4 j = 3 j = 4

extreme value

σ = 1 1256 523 1316 1318 358 265

σ = 2 1234 480 1270 1264 390 303

gamma

γ = 3.080 1109 2098 1199 3724 175 677

The results for the logistic and the extreme value distributions are presented in Tables

2.3 and 2.4, respectively. For testing for the moments of the logistic distribution, the new

third order rescaled component test seems to have good sizes, whereas all other third order

test sizes are too small under the normal and uniform alternatives. For the fourth order

components, even under the logistic full parametric null hypothesis, the sizes of the rescaled

tests are too large. This is most likely due to the use of the standard normal quantiles as

critical values. Despite the increased size, the new fourth order test seems to retain this size

under the gamma distribution with γ = 5. When testing for the moments of the extreme

value distribution, we see approximately the same behaviour, except that now the fourth

order test has good size, and the size of the third order test is too large. Although this

limited simulation study illustrates the necessity of correctly standardising the components,

all rescaled tests seem to have very limited value in most practical settings where sample

sizes are often much smaller than n = 1000. It is particularly this observation that motivates

the informative goodness of fit procedure that is the topic of Section 3.
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3. Data-Driven Smooth Tests and Nonparametric Density Estimation

3.1. Introduction

The simulation results presented in Section 2.3 have demonstrated that even the properly

rescaled component tests do not possess the diagnostic property in small to moderately large

samples. On the other hand it is generally known that (generalised) smooth goodness of fit

tests have good power so that these tests are still often to be recommended in practice. The

conclusion about the component tests only implies that at the rejection of the null hypothesis,

nothing more informative can be said on how the true and the hypothesised distributions

differ, at least not for most realistic sample sizes. In this section we propose a method that

is related to data-driven smooth tests, as well as to nonparametric density estimation.

Data-driven smooth tests differ from ordinary smooth tests by selecting the order k using

the data. In particular, a model selection criterion is first applied to the data, resulting in

an ‘estimated’ order, which is subsequently used as the order of the smooth test. This

order selection process affects the null distribution of the test statistic. See for example

Ledwina (1994); Kallenberg and Ledwina (1997); Claeskens and Hjort (2004) for the theory

of data-driven tests. The most common selection rules used in data-driven smooth testing are

Akaike’s Informatin Criterion (AIC, (Akaike, 1973, 1974)) and the Bayesian Information

Criterion (BIC, (Schwarz, 1978)). More details on these criteria are given in Section 3.2.3.

Despite the popularity of these selection rules, and their importance in statistical model

selection in general, we suggest here using a criterion that originates from nonparametric

density estimation. In Section 1.2, when we introduced the order k alternative (1.3), we

mentioned that this particular form is also the basis of orthogonal series density estimators.

By applying a criterion that aims at minimising the overall bias of the density estimate,

and by plotting the resulting nonparametric density estimate, the statistician may use this

density estimate as a basis for formulating conclusions. Moreover, since in this way the

data-driven test and the density estimate are based on the same model selection criterion, no

contradictory conclusion will arise.

In Section 3.2 more details on selection criteria are given. Our data-driven test is presented

in Section 3.3, and in Section 3.5 the new procedure is evaluated in a simulation study.

3.2. Model selection criteria

3.2.1. The horizon and improved density estimates

In the previous section we said that a model selection criterion selects the ‘order’ of the

smooth test, but more generally it may be used to select any number of components from

an a priori speficied set. Let Sh be an index set of the form {p + 1, . . . ,k}, where k > p is

the maximal order one is prepared to consider. This index set is often called the horizon,

which explains the Sh notation. In particular, we restrict our discussion to finite horizons,

i.e. k < ∞. Let S ⊆ Sh and let gS denote the smooth density defined by

gS(x;θS,βββ ) =

{

1+∑
i∈S

θihi(x;βββ )

}

f (x;βββ ). (3.1)
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where θθθ T
S = (θi)i∈S. This definition allows for arbitrary index sets S, whereas gk implies

that all terms θihi(x;βββ ) with i ≤ k are included. Finally, we also introduce the notation g∞

for gS with S = {p+1, . . .}, so that g∞ = g.

Once a model S has been selected, the θ j ( j ∈ S) parameters in (3.1) can be estimated by

θ̂ j = 1
n ∑n

i=1 h j(Xi; β̃ββ ). Substituting these, and the estimates of the nuisance parameters (β̃ββ )

into (3.1) results in gS(x; θ̂θθ S, β̃ββ ), which we refer to as the improved density estimate. Note

that we actually do not necessarily use the most efficient estimation scheme here. First, the

estimators θ̂ j may be unbiased as demonstrated in Section 1.2, but they are not necessarally

efficient. Moreover, they are conditional on β̃ββ , which is the MME of the nuisance parameter

under the null hypothesis. It is likely that more efficient estimation is possible, but we aim

here at a simple procedure from an implementation point of view. A similar estimation

approach was also suggested by Claeskens and Hjort (2004), who referred to it as two-

stage estimation. Buckland (1992) and Efron and Tibshirani (1996) discuss other estimation

procedures. The improved density estimate is basically an orthogonal series nonparametric

density estimate, with two major differences as to how it usually appears in the statistical

literature. First, the ‘parametric start’ has nuisance parameters, and, second, the terms in

S are only considered when the related data-driven test (see Section 3.3) rejects the null

hypothesis.

3.2.2. Loss functions and the WISE model selection criterion

Model selection criteria often originate from loss functions. In the present context a loss

function measures the discrepancy between the true and the selected model. It is a positive

function that cannot increase with increasing complexity of the selected model, and which

is zero if and only if the selected model is the true data-generating model. We denote the

loss resulting from using gS instead of g as Λ(g,gS) = Λ(g,gS,θθθ ,βββ ).

The basic idea behind the use of loss functions for model selection is that the model S

should be chosen so that the loss function is minimized. This can be done if the param-

eter γγγT = (βββ ,θθθ) is replaced by an estimate, say γ̂γγ , but this would almost always result in

choosing the largest model among the models in S. Thus this simple plug-in principle does

not make much sense here. Moreover, using estimates would only result in the selection of

the ‘best’ model for a given data set, whereas one wants to select a model that describes

any other random sample from the same distribution g just as well as the sample used for

model selection. The solution exists in using the expected loss Eg [Λ(g,gS; γ̂γγ)] as a criterion.

Here the expectation is taken over the estimators γ̂γγ with respect to the true distribution g of

the sample observations. Since the expected loss typically contains unknown parameters,

the actual model selection criterion is taken as an (asymptotic) unbiased estimator of the

expected loss. This general idea is applied in the next paragraph.

Consider the weighted integrated squared error (weighted ISE),

Λ(g,gS,θθθ ,βββ ) =
∫ +∞

−∞

(g(x)−gS(x;βββ ,θθθ))2

f (x;βββ )
dx, (3.2)

where 1/ f (x;βββ ) serves as the weight function. The same loss function has been studied

by Anderson and Figueiredo (1980) in the context of nonparametric density estimation, and
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by Eubank, LaRiccia and Rosenstein (1987) for goodness of fit testing. It is also known

as Pearson’s φ 2 divergence. Eubank, LaRiccia and Rosenstein (1987) showed that θ j =
∫ +∞
−∞ h j(x)gS(x)dx is the minimiser of (3.2) for a fixed subset S. When gS equals to the true

density g, the estimator θ̂ j is the plug-in estimator of θ j, which is unbiased.

Let S̄ = {p+1, p+2, . . .}\S, and let g∞ denote the expansion (1.3) with k →∞. Replacing

g with g∞, and (βββ ,θθθ) with (β̃ββ , θ̂θθ) in (3.2) gives

Λ(g∞,gS, θ̂θθ , β̃ββ ) =

∫ +∞

−∞

[(

1+
∞

∑
j=1

θ jh j(x; β̃ββ )
)

f (x; β̃ββ )−
(

1+ ∑
j∈S

θ̂ jh j(x; β̃ββ )
)

f (x; β̃ββ )
]2

f (x; β̃ )
dx

=

∫ +∞

−∞

f 2(x; β̃ββ )

f (x; β̃ββ )

(

∑
j∈S

(θ j − θ̂ j)h j(x; β̃ββ )+ ∑
j∈S̄

θ jh j(x; β̃ββ )

)2

dx

= ∑
j∈S

(θ j − θ̂ j)
2 + ∑

j∈S̄

θ 2
j .

The last step is basically Parseval’s identity. To guarantee that Λ remains bounded, we

require that the density g belongs to the ellipsoid

G =

{

g :
∞

∑
j=1

θ 2
j < ∞,θ j =

∫ +∞

−∞
h j(x;βββ )g(x)dx

}

. (3.3)

For practical purposes, however, we may truncate the orthonormal expansion g∞ of g at

some specified maximal order, say k. We therefore redefine S̄ = {p + 1, . . . ,k} \ S, and

let Smax = {p + 1, . . . ,k}. We further write Λ(g,gS,θθθ ,βββ ) as Λ(S,θθθ ,βββ ). When θθθ and βββ

are replaced by their estimates θ̂θθ and β̃ββ , this loss measures how well the true density is

estimated by the nonparametric density estimate gS(x; β̃ββ , θ̂θθ) in terms of the weighted ISE.

This loss suffers from the disadvantage that it only measures how well the estimated gS

approximates g for the observed sample. To overcome this problem, the expected loss

E
[

Λ(S, θ̂θθ , β̃ββ )
]

= ∑
j∈S

Var
[

θ̂ j

]

+ ∑
j∈S̄

θ 2
j ,

is considered. This can be recognised as a weighted version of the mean ISE. The un-

weighted mean ISE is generally abbreviated as MISE; here we refer to the weighted MISE

as WISE. The expected loss cannot be used as a criterion because it depends on unknown

parameters. In practice, we therefore have to consider an unbiased estimator of the expected

loss. Let σ̃2
j denote the estimator of Var

[

Ṽj

]

as proposed in Theorem 2.1, or, when MME

and MLE coincide, the estimator (1.5) of Henze and Klar may be more convenient. Here

we propose

Λ̂(S, θ̂θθ , β̃ββ ) = ∑
j∈S

ν̃2
j + ∑

j∈S̄

(

θ̂ 2
j − ν̃2

j

)

, (3.4)

where ν̃2
j = 1

n
σ̃2

j is an estimator of Var
[

θ̂ j

]

= Var
[

1√
n
Ṽj

]

. Finally, we suggest replacing
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the expected loss estimator in (3.4) by a slightly modified version,

Λ̂(S, θ̂θθ , β̃ββ ) = ∑
j∈S

ν̃2
j + ∑

j∈S̄

(

θ̂ 2
j − ν̃2

j

)

+
, (3.5)

where (.)+ indicates max(0, .). This modification usually improves the risk estimate (Wasser-

man, 2005, Chapter 8). We refer to this model section criterion as the WISE criterion.

Now we have defined all the machinary required for our model selection criterion. From

all models associated with all index subsets of {p+1, . . . ,k}, we define

Ŝ = ArgMinS⊆{p+1,...,k}Λ̂(S, θ̂θθ , β̃ββ ). (3.6)

Thus Ŝ is such that Λ̂(Ŝ, θ̂θθ , β̃ββ ) is smaller than all other Λ̂(S′, θ̂θθ , β̃ββ ) (S′ ⊆ {p + 1, . . . ,k}).

Often model selection is restricted to searching within sequences of nested models, i.e. S

is restricted to {p + 1, . . . , j}, for j = p + 1, . . . ,k. In this case, the model selection starts

with j = p + 1, and an additional θ j will be added to the model as long as 2ν̃2
j < θ̂ 2

j . A

similar selection rule was proposed by Diggle and Hall (1986) and Tarter (1976). This

implementation is referred to as the order selection (OS) test; without this restriction the

process is referred to as the subset selection (SS) test.

3.2.3. The AIC and BIC criteria

For completeness we also define the AIC and BIC criteria. Although they both are also

related to loss functions, we present only the final criteria that are used in practice. The AIC

for a model S is defined as

AICS = −2logLS(θ̂θθ S)+2|S|,

where |S| is the number of components in S, and LS(θ̂θθ S) is the maximised likelihood func-

tion, i.e. the likelihood function evaluated in the MLE θ̂θθ S. Using the same notation, the BIC

is given by

BICS = −2logLS(θ̂θθ S)+ |S| logn.

It differs from AIC only in the complexity penalty term where the factor 2 has been re-

placed by logn. The effect is that BIC penalizes more complex models more heavily, giving

preference to simpler models.

From a computational point of view the AIC and BIC criteria are quite demanding, be-

cause they require MLE calculation of the parameters in (1.3). Although algorithms exist for

finding the (approximate) MLEs (Buckland, 1992; Efron and Tibshirani, 1996), it is often

suggested that −2logLS(θ̂θθ S) be replaced by S̃S, or even by ∑ j∈S Ṽ 2
j /σ̃2

j . Kallenberg and

Ledwina (1997) argued that this substitution is allowed as the likelihood ratio test statistic

(−2logLS(θ̂θθ S)) and the score test statistic (ŜS, based on the MLE of βββ ) are locally equiv-

alent. Although this local equivalence is theoretically correct, we think that this is against

the rationale of using model selection techniques in the present setting. When the null

hypothesis is not true, we hope to select a model that is close to the true distribution. This

reasoning implies that the model selection criterion must also work well far away from the
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null hypothesis, and this is in contrast to the local setting under which the substitution with

ŜS is sustained.

3.3. The data-driven test

In this paper we adopt the data-driven testing framework of Claeskens and Hjort (2004),

but instead of using MLE and likelihood ratio or score tests, we consider MME and gener-

alised smooth tests.

Let Σ̃ΣΣS denote any
√

n consistent estimator of ΣΣΣS, which is the asymptotic covariance

matrix of ṼVV S. In a traditional full parametric setting, the consistency and the asymptotic

variance are defined under the full parametric null hypohesis. They may also be replaced by

the empirical variance estimators of HK, or, for distributions for which MLE and MME do

not coincide, by the new variance estimator. The data-driven generalised smooth test is then

defined as

S̃Ŝ = ṼVV
t

ŜΣ̃ΣΣ
−1

Ŝ ṼVV Ŝ,

where Ŝ is the selected model based on WISE (3.6).

In the following theorem we establish the limiting distribution of S̃Ŝ under sequences of

local alternatives which are defined as

gn(x;θθθ n,βββ ) = f (x;βββ )

(

1+
∞

∑
j=p+1

θ jnh j(x;βββ )

)

, (3.7)

where θθθ t
n = (θp+1n, . . .) and θ jn = 1√

n
t j ( j = p + 1, . . .) with non-zero tttt = (tp+1, . . .). The

densities are defined for all ttt so that gn is a positive function. A similar sequence of local

alternatives could have been constructed starting from a density of the form (1.2). The

results would be equal because for large n the density (3.7) is a good first order Taylor

approximation.

Theorem 3.1. Suppose the maximal order k in the WISE selection criterion (3.6) is finite.

Consider the sequences of local alternatives, given by gn in (3.7), and further assume that

gn ∈ G. Let ΣΣΣ0 denote the asymptotic covariance matrix of ṼVV
t
= (Ṽp+1, . . . , ,Ṽk) under the

full parametric null hypothesis, and define ZZZt = (Zp+1, . . . ,Zk) as a zero mean multivariate

normal variate with covariance matrix equal to ΣΣΣ0. Let Q denote the index set defined as

the minimiser of

Λ∞(S) = ∑
j∈S̄

(Z j + t j)
2 + tr(ΣΣΣS)− tr(ΣΣΣS̄),

over S ⊆ {p + 1, . . . ,k}. Define ZZZQ as the vector (Z j) j∈Q, tttQ as the vector (t j) j∈Q, and,

similarly, ΣΣΣS as the matrix built from the appropriate elements in ΣΣΣ. Then,

S̃Ŝ

d−→ (ZZZQ + tttQ)t ΣΣΣ−1
Q (ZZZQ + tttQ) . (3.8)
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Proof. The proof is similar to the method of proof used in Section 3.1 of Claeskens and Hjort

(2004). The proof consists of two parts. First we prove that Λ∞(S) and nΛ̂(S, θ̃θθ , β̃ββ ) (given in

(3.4)) are asymptotically equivalent in distribution. Based on this result it is straightforward

to prove the convergence in (3.8).

Since k < ∞ is assumed, we only need convergence of finite dimensional random vectors.

We use the following result. For the sequences of local alternatives,
√

nθ̃θθ = ṼVV
d−→ ZZZ + ttt.

Since σ̃2
j = nν̃2

j is a consistent estimator of the variance of Ṽj =
√

nθ̃ j, we have that nν̃2
j

converges in gn probability to the appropriate diagonal element of ΣΣΣ0. Hence, for all S ⊆
{p+1, . . . ,k}, as n → ∞,

nΛ̂(S, θ̃θθ , β̃ββ )
d−→ ∑

j∈S̄

(Z j + t j)
2 + tr(ΣΣΣS)− tr(ΣΣΣS̄) = Λ∞(S). (3.9)

The convergence in (3.8) follows from the simultaneous convergence of all S̃S to WS ≡
(ZZZS + tttS)

tΣΣΣ−1
S (ZZZS + tttS) for all fixed index sets S ⊆ {p+1, . . . ,k}, and from the convergence

in (3.9). Write

S̃Ŝ = ∑
S⊆{1,...,k}

TSI
[

S = Ŝ
]

d−→ ∑
S⊆{1,...,k}

WSI [S = Q] = WQ.

This completes the proof.

The asymptotic null distribution of the data-driven test statistic follows immediately from

this theorem by putting ttt = 000. The next corallary relates the WISE based test with the AIC

based data-driven test for distributions for which MME and MLE coincide. The latter is one

of the tests considered by Claeskens and Hjort (2004).

Corollary 3.1. Suppose that all assumptions required in Theorem 3.1 hold, and suppose

that the hypothesised distribution f belongs to the class of distributions for which MME

and MLE coincide. Then, under the sequence of local alternatives (3.7), the WISE and AIC

based data-driven tests are equivalent.

Proof. First note that the Q that minimises nΛ̂(S, θ̃θθ , β̃ββ ) is exactly equal to the maximiser

of ∑ j∈S nθ̃ 2
j − 2n∑ j∈S ν̃2

j . The latter expression converges under the sequences of local

alternatives in distribution to

∑
j∈S

(Z j + t j)
2 −2tr(ΣΣΣS). (3.10)

When MME and MLE coincide, all diagonal elements of ΣΣΣ0 are equal to 1, and thus

tr(ΣΣΣS) = |S|.

Finally, note that we expect that our test behaves differently when the conditions of Corol-

lary 3.1 do not hold. For example, when MME and MLE do not coincide, the variances ΣΣΣS

in the correction term of (3.10) are not necessarily equal to one. We expect thus that in order
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selection the WISE procedure will select more terms when their corresponding θ parameter

estimators have variances smaller than one. The variances listed in Table 2.1 and 2.2 indicate

that this may happen under some alternatives, and it does not for others.

3.4. Correcting the improved density estimate

In Section 3.1, where the rationale of the data-driven procedure has been given, we

mentioned briefly that densities of the form (3.1) are not necessarally positive functions,

and thus they do not always represent proper density functions. Gajek (1986) and Glad,

Hjort and Ushakov (2003) proposed correction procedures that can be applied after model

selection and parameter estimation. Here we only briefly explain the solution of Gajek

(1986), as this fits very nicely in our WISE framework. Without loss of generality we will

simplify the notation by not writing the dependence of densities and polynomials on the

nuisance parameter β .

Gajek (1986) proposed a simple correction method based on theoretical arguments. Gajek

described his method in a general way so that it is applicable to many types of non-bona fide

density estimators. As a loss function he considered a weighted ISE,

ΛΛΛ(g,gS; γ̂γγ) =

∫ +∞

−∞

{

g(x;θθθ)−gS(x; θ̂θθ)
}2

h(x)dx, (3.11)

where h(x) is a weight function satisfying

∫ +∞

−∞
{1/h(x)}dx < ∞. (3.12)

The Gajek-corrected density estimator gc
S is then defined as

gc
S(x; θ̂θθ) = f (x)max

{

0,1+∑
i∈S

θ̂ihi(x)

}

− a

h(x)
, (3.13)

where a is such that
∫ +∞
−∞ gc

S(x;θθθ)dx = 1. Gajek proposed a simple iterative algorithm to

find a. He further proved that the expected loss of his corrected density estimator, which is a

weighted MISE, is not larger than the weighted MISE of the uncorrected density estimator.

Moreover, if the uncorrected estimator is consistent, then so is the corrected estimator. These

are very important results, but the weight function h has an important role, particularly since

it determines the meaningfulness of the expected loss function. Note that the WISE loss

function corresponds with Gajek’s loss function if h(x) = 1/ f (x), which clearly satisfies

the condition of (3.12) for
∫ +∞
−∞ {1/h(x)}dx =

∫ +∞
−∞ f (x)dx ≡ 1 < ∞. The corrected density

estimator of (3.13) now becomes

gc
S(x; θ̂θθ) = f (x)max

{

0,1−a+∑
i∈S

θ̂ihi(x)

}

, (3.14)

where a is such that
∫ +∞
−∞ gc

S(x;θθθ ,β )dx = 1. Note that a appears in the linear part 1− a +

∑i∈S θ̂ihi(x) of which only the positive part contributes to gc
S.
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3.5. A simulation study

In this simulation study we investigate some properties of the data-driven tests based on

the AIC, BIC and WISE selection criteria. Since we have introduced the WISE criterion

so as to have a good improved density estimate after rejecting the null hypothesis, the bias

and the variance of the density estimates are also estimated in this study. As the primary

aim is still hypothesis testing, we also estimate the powers of the tests under the various

alternatives. For assessing the bias we computed the WISE loss function (3.2) evaluated

at the alternative g, with nuisance parameters fixed as in the distribution used in the sim-

ulations, and with gŜ equal to the estimated improved density as selected by the selection

criteria when this the corresponding test rejected the null hypothesis. Otherwise f (x; β̃ββ ) was

considered instead. We also included the unweighted ISE loss function, which is basically a

simple least squares loss function. As a measure of the variance of the improved density es-

timator, we first computed the pointwise variances of the improved density estimates at 100

equally spaced points in the support over the 10,000 Monte Carlo runs, and subsequently

we have averaged these 100 variances, resulting in an overall measure for the variance.

All tests are performed at the 5% level of significance. Since we only tested location-scale

families, the null distributions were approximated by 100,000 simulation runs under the null

hypothesis. We present results for testing for the normal and the logistic distributions. As

alternatives we considered densities (1.3) of order 5, indexed by the parameters θ3, θ4 and

θ5. All data-driven smooth tests are based on subset selection with horizon Sh = {3,4,5,6},

i.e. the maximal order is one higher than the maximal order of the alternatives considered.

The results for testing for the normal and logistic distributions are presented in Tables 3.1,

3.2, 3.3, and 3.4. These results show that for both the normal and the logstic case, the WISE

based data-driven test has for most alternatives the smallest WISE, as expected. Also in

terms of the unweighted ISE the new data-driven test has overall the best performance. The

average bias of the improved density estimator based on the WISE data-driven test, seems

again often to be slightly better as compared to the other two testing procedures. Note that

particularly the BIC based data-driven test does worse than the other two tests in terms of all

estimation quality measures considered. One possible explanation is that the penalty of the

BIC criterion penalises more heavily for more complex models, resulting in underfitting.

Since the primary aim is still hypothesis testing, the powers are very important too. For

both the logistic and the normal case, we conclude that the WISE data-driven test has very

often the largest power among all three tests, and the BIC based test is the least powerful.

4. Example

Bain, Easterman and Engelhardt (1973) present data of a life-test of incandescent lamps.

They consider the logistic distribution as a possible life-testing model. The observed failure

times are 785, 855, 905, 918, 919, 920, 929, 936, 948 and 950. The same data set has

also been used by Engelhardt (1975), who assumed that the data are well described by a

logistic distribution. In this section, we formally test the null hypothesis that the data are

sampled from a logistic distribution. Since nothing is known a priori about the variance of

the distribution, we consider the two-parameter logistic distribution. For all smooth tests,

bootstrap p-values are computed based on 10,000 bootstrap runs.
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Table 3.1. Estimated WISE and ISE measures for the three data-driven tests for nor-
mality (WISE, AIC and BIC based) under alternatives (1.3) indexed by θ3, θ4 and
θ5.

θ3 θ4 θ5 WISE ISE

WISE AIC BIC WISE AIC BIC

0.3 0.0 0.0 0.0258 0.0312 0.0279 0.00032 0.00043 0.00036

0.0 0.3 0.0 0.0531 0.0547 0.0544 0.00112 0.00112 0.00114

0.0 0.0 0.3 0.0350 0.0389 0.0389 0.00080 0.00092 0.00094

0.3 0.3 0.0 0.0538 0.0535 0.0542 0.00103 0.00111 0.00108

0.3 0.0 0.3 0.0276 0.0269 0.0277 0.00020 0.00021 0.00021

0.0 0.3 0.3 0.0794 0.0860 0.0833 0.00179 0.00195 0.00190

0.3 0.3 0.3 0.0703 0.0734 0.0723 0.00120 0.00150 0.00136

0.3 0.3 -0.3 0.0988 0.0897 0.0998 0.00227 0.00220 0.00231

-0.3 0.0 0.0 0.0256 0.0307 0.0269 0.00033 0.00043 0.00035

0.0 -0.3 0.0 0.0389 0.0388 0.0381 0.00115 0.00116 0.00115

0.0 0.0 -0.3 0.0344 0.0378 0.0394 0.00077 0.00085 0.00092

Table 3.2. Estimated average biases, average variances and powers for the three data-
driven tests for normality (WISE, AIC and BIC based) under alternatives (1.3) in-
dexed by θ3, θ4 and θ5.

θ3 θ4 θ5 bias variance power (%)

WISE AIC BIC WISE AIC BIC WISE AIC BIC

0.3 0.0 0.0 -0.00024 -0.00025 -0.00024 0.00030 0.00031 0.00032 54.2 43.0 49.8

0.0 0.3 0.0 0.00139 0.00142 0.00143 0.00033 0.00035 0.00033 60.5 61.5 58.6

0.0 0.0 0.3 0.00001 0.00001 0.00000 0.00011 0.00011 0.00010 32.1 27.5 27.2

0.3 0.3 0.0 0.00166 0.00172 0.00169 0.00045 0.00038 0.00042 85.9 84.3 84.6

0.3 0.0 0.3 -0.00029 -0.00028 -0.00029 0.00025 0.00024 0.00027 27.5 30.8 32.8

0.0 0.3 0.3 0.00133 0.00139 0.00135 0.00034 0.00036 0.00034 76.2 73.9 71.4

0.3 0.3 0.3 0.00142 0.00156 0.00151 0.00052 0.00038 0.00045 70.2 73.2 69.2

0.3 0.3 -0.3 0.00094 0.00102 0.00098 0.00056 0.00039 0.00055 97.7 97.6 97.8

-0.3 0.0 0.0 -0.00025 -0.00026 -0.00025 0.00029 0.00030 0.00030 54.2 43.7 51.3

0.0 -0.3 0.0 0.00001 0.00001 0.00001 0.00002 0.00002 0.00000 24.9 27.3 9.7

0.0 0.0 -0.3 0.00003 0.00004 0.00005 0.00011 0.00014 0.00012 37.0 41.5 36.6

The p-values of the Anderson-Darling, Watson and Cramér-von Mises tests are 0.024,

0.046 and 0.046, respectively. Thus, at the α = 0.05 level of significance, all tests suggest

that the logistic distribution does not describe the data well. The order k = 4 generalised

smooth test, using MME, gives a p-value of 0.027, and the individual third and fourth order

components give p-values of 0.025 and 0.949, respectively. Again the null hypothesis is

rejected, but as the component tests are not diagnostic, we may not relate them to moment

deviations. For completeness we also give the p-values of the rescaled components, using

the appropriate new variance estimator. The third and fourth order rescaled component tests
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Table 3.3. Estimated WISE and ISE measures for the three data-driven tests for the
logistic distribution (WISE, AIC and BIC based) under alternatives (1.3) indexed by
θ3, θ4 and θ5.

θ3 θ4 θ5 WISE ISE

WISE AIC BIC WISE AIC BIC

0.5 0.0 0.0 0.04456 0.04465 0.04511 0.00099 0.00099 0.00100

0.0 0.5 0.0 0.03141 0.03141 0.03141 0.00079 0.00079 0.00079

0.0 0.0 0.5 0.02575 0.02615 0.02668 0.00065 0.00065 0.00067

0.5 0.5 0.0 0.07042 0.07042 0.07035 0.00166 0.00166 0.00166

0.5 0.0 0.5 0.00457 0.00450 0.00452 0.00006 0.00006 0.00006

0.0 0.5 0.5 0.05599 0.05699 0.05651 0.00141 0.00143 0.00142

0.5 0.5 0.5 0.03429 0.03448 0.03435 0.00082 0.00083 0.00083

0.5 0.5 -0.5 0.16308 0.16299 0.16320 0.00390 0.00390 0.00390

-0.5 0.0 0.0 0.04432 0.04451 0.04484 0.00098 0.00099 0.00099

0.0 -0.5 0.0 0.03111 0.03111 0.03110 0.00079 0.00079 0.00079

0.0 0.0 -0.5 0.02564 0.02606 0.02672 0.00064 0.00065 0.00067

Table 3.4. Estimated average biases, average variances and powers for the three data-
driven tests for the logistic distribution (WISE, AIC and BIC based) under alterna-
tives (1.3) indexed by θ3, θ4 and θ5.

θ3 θ4 θ5 bias variance power (%)

WISE AIC BIC WISE AIC BIC WISE AIC BIC

0.5 0.0 0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 70.2 68.1 65.3

0.0 0.5 0.0 -0.00584 -0.00583 -0.00583 0.00001 0.00001 0.00001 71.1 71.7 71.2

0.0 0.0 0.5 0.00002 0.00000 0.00001 0.00000 0.00000 0.00000 49.8 44.2 37.1

0.5 0.5 0.0 -0.00583 -0.00583 -0.00583 0.00000 0.00000 0.00000 90.6 90.6 91.7

0.5 0.0 0.5 0.00001 0.00000 0.00001 0.00000 0.00000 0.00000 36.4 36.7 37.8

0.0 0.5 0.5 -0.00579 -0.00583 -0.00580 0.00001 0.00001 0.00001 89.0 89.0 88.3

0.5 0.5 0.5 -0.00579 -0.00583 -0.00581 0.00001 0.00000 0.00001 76.4 77.2 76.6

0.5 0.5 -0.5 -0.00582 -0.00583 -0.00583 0.00000 0.00000 0.00000 99.4 99.5 99.4

-0.5 0.0 0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 72.4 68.8 66.7

0.0 -0.5 0.0 0.00583 0.00583 0.00583 0.00000 0.00000 0.00000 0.6 0.4 0.2

0.0 0.0 -0.5 -0.00002 -0.00001 -0.00002 0.00000 0.00000 0.00000 52.0 48.5 39.8

result in p-values 0.136 and 0.966, respectively. As compared to their unscaled versions,

the significance of the third order terms has disappeared, but based on the conclusion of the

simulation study of Section 2.3, we actually do not recommend using the results of these

tests. Instead we continue with the data-driven test, using the new WISE criterion. We have

chosen subset selection from the horizon inlcuding all terms up to order 5. The p-value of

the data-driven test is 0.014, selecting the third and the fifth order terms. Figure 4.1 shows

the histogram of the data, the fitted hypothesised and improved densities. The improved

density estimate is skewed and it has a heavier tail as compared to the hypothesised logistic

distribution.
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Figure 4.1. The histogram of the incandescent lamps data, the estimated hypothesised
(dashed line) and the improved (solid line) densities

Appendix A. The Logistic Distribution

The density function of the two-parameter logistic distribution is given by

f (x;βββ ) =
exp(−(x−µ)/σ)

σ (1+ exp(−(x−µ)/σ))2
for −∞ < x < +∞,

where βββ t = (µ,σ), and µ and σ are the location and scale parameter, respectively. When

µ = 0 and σ = 1, the distribution is referred to as the standard logistic distribution, which

has density function f0(.). When only one of σ = 1 or µ = 0 is assumed, one-parameter

logistic distributions are obtained.

The MME is found by solving V1(βββ ) = V2(βββ ) = 0, resulting in

µ̃ = X̄ and σ̃ =
√

3S2/π,

where S2 is the sample variance. For this particular distribution the MME is not equal to the

MLE. The use of MME rather than MLEs may result in some loss in efficiency, but, in this

particular case, Lehmann (1999) has shown that the sample mean is an efficient estimator of

µ .

Since the logistic distribution is a location-scale family, it is sufficient to know the or-

thonormal polynomials for the standard logistic distribution in terms of z = (x−µ)/σ . The

first five orthonormal polynomials for the standard logistic distribution are given by

h0(z) = 1 , h1(z) =

√
3

π
z

h2(z) =
3
√

5

4π2
(z2 −π2/3)
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h3(x) =
5
√

7

12π3

(

x3 − 7

5
π2x

)

and

h4(x) =
35

64π4

(

x4 − 26

7
π2x2 +

27

35
π4

)

.

The covariance matrix of ṼVV
t
= (Ṽ3,Ṽ4) equals

ΣΣΣ2 =

[

1.064815 0
0 1.088889

]

.

The partial derivates ∂hr

∂βββ
(x;βββ ), which are required for the computation of the new vari-

ance estimator, are listed next:

∂h2

∂ µ
(x;βββ ) = −6z/(

√
3.2π2σ)

∂h3

∂ µ
(x;βββ ) = −5

√
7

(

3z2 −4.2
π2

3

)

/(12π3σ)

∂h4

∂ µ
(x;βββ ) = −35

(

4z3 − 26

7
π22z

)

/(64π4σ)

∂h5

∂ µ
(x;βββ ) = −(0.0007112402z4 −0.0545973510z2 +0.4475789427)/σ

∂h6

∂ µ
(x;βββ ) = −(7.520244E-5z5 −0.01045853z3 +0.2190961z)/σ

∂h7

∂ µ
(x;βββ ) = −(6.821868E-6z6 −1.558928E-3z4 +0.06671607z2

−0.4159354)/σ

∂h2

∂σ
(x;βββ ) = −6z2/(

√
3.2π2σ)

∂h3

∂σ
(x;βββ ) = −5

√
7z

(

3z2 −4.2
π2

3

)

/(12π3σ)

∂h4

∂σ
(x;βββ ) = −35z

(

4z3 − 26

7
π22z

)

/(64π4σ)

∂h5

∂σ
(x;βββ ) = z

∂h5

∂ µ
(x;βββ ) and

∂h6

∂σ
(x;βββ ) = z

∂h6

∂ µ
(x;βββ )

∂ h7

∂σ
(x;βββ ) = z

∂h7

∂ µ
(x;βββ ),

where βββ t = (µ ,σ) and z = x−µ
σ .
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Appendix B. The Extreme Value Distribution

The density function of the two-parameter extreme-value distribution is given by

f (x;βββ ) = exp

(

−x−µ

σ
− exp

(

−x−µ

σ

))

for −∞ < x < +∞,

where βββ = (µ,σ)t , and µ and σ are the location and scale parameters, respectively.

The MME of βββ is the solution to Ṽ1 = Ṽ2 = 0, resulting in µ̃ = X̄ −
√

6γ
π σ̃ , where γ is

Euler’s constant, and in which σ̃ =
√

6
π S.

Next, the first five orthonormal polynomials for the standard extreme value distribution

are given. Let z = x−µ
σ − γ .

h0(z) = 1 , h1(z) =

√
6

π
z and

h2(z) = 30
z2 − 12ζ (3)

π2 z− π2

6
√

110π4 − 1
π2 21600ζ (3)2

h3(x) = 0.1060499473z3 −0.4944037009z2 −0.219420091z

+ 0.5583053486 and

h4(x) = 0.02493263957z4 −0.2416834738z3 +0.2690771426z2

+ 0.7769092008z−0.2258795,

where ζ (3) is Riemann’s zeta function evaluated at 3, which is also known as Apéry’s

constant, which is approximately 1.20205690.

The variance-covariance matrix of ṼVV
t
= (Ṽ3,Ṽ4) equals

ΣΣΣ2 =

[

1.585897122 −0.4121139966
−0.4121139966 1.291902227

]

.

The partial derivates ∂hr

∂βββ
(x;βββ ), which are required for the computation of the new vari-

ance estimator, are listed next:

∂h3

∂a
(x;βββ ) = −(0.1060499473(z− γ)2 −0.4944037009(z− γ)

−0.219420091)/b

∂h4

∂a
(x;βββ ) = −(0.02493263979(z− γ)3 −0.2416834756(z− γ)2

+0.269077145(z− γ)+0.7769092062)/b

∂h5

∂a
(x;βββ ) = −(−0.765066730−0.462335263z+0.480821661z2

−0.092490112z3 +0.004746706z4)/b
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∂h6

∂a
(x;βββ ) = −(1.0327007209−0.0480989854z−0.5440920752z2

+0.1947556972z3 −0.0219166650z4 +0.0007592173z5)/b

∂h7

∂a
(x;βββ ) = −(−0.9614699721+0.6159510209z+0.4265597373z2

−0.2987314444z3 +0.0569116488z4 −0.0042051687z5

+0.0001046942z6)/b

∂hr

∂b
(x;βββ ) = z

∂hr

∂a
(x;βββ ) for r = 3, . . . ,7,

where βββ t = (µ,σ), z = x−µ
σ and γ ≡ 0.5772156649.
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